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Abhact-The dynamic equations for a two-link flexible robot arm have bcen derived rigorously. The arm
is moving in the vertical plane. The payload is simulated by attaching additional masses to the arm at
any specific iocations. Although the governing equations of the system and t h e measurements are
nonlinear, they arc explicitly obtained. The control strategy and the general procedures to construct a
linear observer and to formulate a control law are discussed.

1. INTRODUCTION

Most of today's analyses and controls of industrial
robots are based on the assumption that the robot
ann is just a collection of rigid bodies so that, after
the joint angles are driven to assume the pre-
computed values, the end effector of the robot arm,
by dead reckoning, will be in the intended position.
Therefore, most of the robots are built to be massive
and unwieldy.

Clearly, it is desirable to build lightweight robot
arms which have a large working volume, high
mobility and the capability to carry heavy payloads.
In order to meet these requirements, the robot arm
has to be flexible, in other words, the rigid-body-
assumption in robotics has to be abandoned. Then
the deflection and the vibration of the robot arm
present a Severe problem to the accuracy and the
stability in positioning. Therefore the control of
flexible manipulators is becoming a critical issue in
robotics.

Cannon and Schmitz[I]published the pioneer
work in the area of control of flexible robot arms, in
1984. In that work the mathematical modeling and
the initial experiments have been carried out to
address the control of a one-link flexible robot arm
where the position of the end effector (tip) i s con-
trolled by measuring that position and using the
measurement as a basis for applying control torque
to the other end of the arm (joint). Also, it is
worthwhile to mention the works of Harashima and
Ueshiba [2], Wang and Vidyasagar [3,4], Sangvera-
phunsiri [5], and Book et d.161. In all those works
there are two things in common: the one-link robot
arm, with its hub rotating about the z-axis, sweeps
the horizontal x-y plane; the flexible a m is modeled
as a beam whose deflection is represented by a
series in te rms of eigenfunctions (normal modes).
Lee et d.[7l, Lee and Wang [8] rigorously derived
the dynamic equations and designed the control
system for a onelink a m which has two degrees of
freedom in rotation and one in translation so that
the working volume of the end effector is a three-

dimensional space instead of a cycle on the horizontal
plane. Usoro et al. [9] presented a 6n i te element/
Langrangian approach for the mathematical
modeling of a two-link flexible manipulator.

In this work the dynamic equations for a two-link
flexible robot arm, moving in the vertical (x-z) plane
are rigorously derived. The payload i s simulated by
attaching additional masses to the ann at any
specified locations. Finite element method, based on
elementary beam theory, has been employed during
the process of formulation. The explicit fonn of the
nonlinear governing equations for the mechanical
system has been obtained. I t is assumed that the
position of the end effector can be measured and only
the information of that measurement will be used as
a feedback to the control system. T h e general pro-
cedures to construct a linear observer and to formu-
late a control law are discussed. However, how to find
the control gain matrix and the estimate gain matrix
is left for future study.

Z PPOBLEM DESCRIFTION

The undeformed configuration of a two-link robot
arm i s shown in Fig. i.In this work i t i s considered
that the motion of the a m i s confined in the vertical
plane, i.e., the x-z plane. I t i s seen that in Fig. 1, the
upper ann makes an angle 4 with respect to the
z-axis, which is opposite to the direction of gravity,
and the angle between the upper arm and the lower
arm is denoted by y. The original lengths of the upper
arm and the lower a m are denoted by I'and I*,
respectively. The deformed configuration of the two-
link robot ann is shown in Fig. 2. Define two new
coordinate systems, (x1, 2') and (x2, z 2) as shown in
Fig. 2, such that the XI-axis and the x*-axis are
parallel to the tangents of the upper arm and the
lower ann at the origin and at the joint between
the two links. respectively. Let the angle between the
x'-axis and the z-axis be denoted by 8. Model the
upper arm and the lower arm by n beam elements
and m beam elements, respectively. Then there are
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Fig. I.The undeformcd configuration of a two-link robot arm.

n +m +I nodal points and each is associated with a
lumpedmass. The payloads may also be simulated by
the masses attached to some nodal points. From now
on, unless otherwise stated, the lumped mass at any
nodal point stands for the sum of the payload carried
at the point and the mass of the beam distributed
to that point. The position vector of the generic ith
nodal point (i=0,1,2,. . .,n) of the deformed
upper arm can be expressed in the (x1, z l ) coordinate
system as

x; =(x!, z f,= (x;. Uf), (1)

where I!/! is the displacement of the ithnodal point
in the direction of zl-axis and thelumpedmass at this
point is denoted by Mf;Similarly, thejth nodal point
(j= 1.2, .. .,m) of the deformed lower arm occupies

3.l"SFORMATIONS

The position vector for any point on the upper
m,e x p d in the global coordinate system (x, z),
may k obtained as

x =[:I=[cos
sin 4 ;;4][

IQi[E:] = @xi. (3)

I t is noticed that Q' i s an orthogonal transformation
matrix which has the following property

(Q1)-' = (Q')'.

x; = (x;. z;, = (x;. Vj); (2) Inother words, any vector V, in the global coordinate
system, can be transformed into Vi, in the (x',zl)

and the lumped mass at this point is denoted by M,'. coordinate system, through V1 = (Q1)'V.

Fig. 2. The deformed configuration of the two-link robot ann and the coordinate systems.
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Now the velocity and the acceleration can bc
obtained as

The total force acting on the ith nodal point o f
the upper am, expressed in the (xl,zl) coordinate
system, can be calculated as

f: =(Q')'fi

Explicitly, eqn. (14) can be rewritten as

ff(x) = -M:[Ui$ - + 2Uf4 +g COS 41,
(14.1)

ff(z) = -Mf[U,' -X:$ - Uf& +g sin 41,
(1 4.2)

x [ + 2Q'v' +Q'[ill
The total force acting on thejth nodal point of the
lower arm can be expressed in the (x1, zI) coordinate
system and the (x2,?) coordinate system, re-
spectively, as follows

The position vector of any point on the lower arm,
expressed in the global coordinate system (x, 2). may
be obtained as

x =[:]=[cos
sin

p ;!3[ ;:I

e @x2 + Q'x:,

where

u+= v;.

Then the velocity and the acceleration can be ob-
tained as

Explicitly, eqns (15-16) can be rewritten as

v = @x' + Q2v2 +Q 'x~+ Q'v;,

8 = @X 2 + 2Q'V' + Q'8' + Q'X!,

+ 2@vf + Q'a;,

where

(16.1)

4. INERTIA FORCE AND GRAVITY

The total force acting on a generic point is equal
to the sum of the inertia force and the gravitatio~l
force acting on the point, i.e.,

(16.2)

wherrCEcoS(B --)andS=sin(B -4).
The total force acting on the lower arm is ~ q u i v -

dent to a force in the xl-direction,F,, a force in the
f= -M.-MgE].
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z'dirtction, F,, and a bending moment, T2, acting at
the joint between the upper ann and the lower ann
(cf. Fig. 3). Thesc resultant forces and moment may
be written as

m

F, = C f / W
I-I

= -r(u*J- fl&j + 20*4 +g COS 4)
m

- Mf[SU; + (-SXf +CUf)b + 2C)Lfj
I - 1

Similarly, the total moment acting on the origin, TI,
can be obtained as

-(Sf' + CU*)Xj']} + T2. (20)

Now, the two-link robot a m can be treated as two
cantilever beams on which &heforces and moment,
due to inertia force and gravity, are acting, as shown
in Fig. 3.

IFINITE ELEMENT ANALYSIS

Following standard procedures in finite element
analysis [IO, 11, 121 and the elementary beam theory,
one may obtain the governing equations for the lower
arm (beam 2), which is treated as a cantilever beam,
8s follows[I
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and K2 i s the (m x m) stiffness matrix for a cantilever
beam subjected to applied forces only. For the upper
ann (beam l),because there is a bending moment, T2,
acting at the free end of beam 1 (cf. Fig. 3), following
the same procedure outlined in[q, the governing
equations may be written as

(37.2)

(37.3)

(37.4)

where

(37.5)

(38.1)

(38.2)

(38.3)

and s is the slope at the free end of beam 1; K' is a
(n x n) matrix; K is a vector of length n and i t can
be written as (Ki, K2,K,, . . .,K")'. By eliminating s
from eqn (24), the following i s obtained

K'U' = f' -KT,/k,

where

=K' -KKJ/k.
(39)

Now eqns (21,27, 19,20) may be rewritten in a more
compact form as follows

where

(41.I)

(33)

(37.1) (41.2)
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y3 = TI- T2 +g T(f'sin & -U* wsb)II
I

1+1Mf(sin 4X; - cos 4U;)
i-I

-2d ru*o*+ M;u:o;)( i- I

m

- 26(S11 + CU*) x Mf of
j-I

- (SI'+ CU*)Xf]}. (41.3)

6. THE INVERSE OF A *

In order to proceed with the derivation, it i s
necessary to write eqn (29) in the following form

&=An,

in other words, it i s necessary to find the inverse of
A *. However, i t i s seen that A * is a function of dis-
placements, U!, (I:,...,U!,, Vi, U:, .. .,Ui, and
joint angles, /3 and 4, which are timedependent.
Certainly, i t i s much more desirable if one is able to
invert A * analytically rather than numerically. For-
tunately, the (n + m + 2) x (n + m + 2) matrix A can
be calculated through the following steps. First,
define several variables as

bl= -a12/ull,

(43.1)

(43.2)

(43.3)

(43.4)

(43.5)
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to indicate the matrix A may be expressed explicitly
as a function of UJ [cf. cqn (3011.

1. TARGET

Consider the displacements and the joint angles, UJ,
as the state variables and the torques, TI and T2, as
control variables of the system. T%e purpose of the
control is to find the control law that makes the
system converge to a steady state which meets certain
prescribed requirements. I f the solutions are con-
verging, then, as time approaches infinity, the time
derivatives of all the variables approach zero, i.e.,

In other words,

Qwf] = 0, (54)

which, according to eqns (36, 39, 40, 41), implies

2 KkVj f= -(K,/k)T<-M:g sin 01,
j- I

(i= 1,2,. . .,n)

m

1Kt Uff= M:g sin Pf, (i=I,2, . ..,m) (56)
3 - 1

m 1+ Mi(XI sin @-V)/cosfpf) , (58)
i-I

where M:=MI for i=1,2, ..., n - 1 and M:=
Mi+r.T h e iterative procedure to solve for UJ/may
be described as follows. First, give trial values for

and 41. Based on eqn (56), solve for U:/
(i= 1,2,. ..,m) and then T i i s calculated according
to eqn (57). Now Ut/ (i= 1,2,. ..,n) can be ob-
tained by solving eqn (55). Finally, T( can be cal-
culated from cqn (58). In order for the end effector
to reach the given target position (x',~'), cqn (7)
requires that

x' =l2 sin j4f-uifcos j4J

z' =I'cos flf+ Uif sin /I/

+I'cos 4f+ UAfsin Of, (60)

which means of, T{, and T( may be determined by

Define the incremental state variables and the
eqns (55-60).

incremental control variables as

A u =(Vi -uy, v: - vy, . . .,u:, - Uif,

v: -uy,..., j4 -p, fp - 4f)

=(AV!,AUi, ..., AV;,AV:, ..., Ap,A@),

(61.1)

AT~(ATi ,AT2) r ~(T, - T~,T2- (61.2)

Then eqns (39-41) can be rewritten as

I

PI= - c KbAUj - (K,/k)AT2
3- 1

-M/g COS #'A& +pr
=pf+pfl, (i= I,2,. ..,n -I)

m

4, - x K$AU; -Mfg COS j4fAfl + 4:
1 - 1

=qf.+qfl, (i=1,2 ,..., m)

I

= -1KhAUj -(K,,/k)AT2
3- I

-(Mi +r )g c o s @/Ad+ yf

E Y f . +r:,

r: +r::

(39*)

(41.I*)

(41.2*)

Er: + Y ?> (41.3')

w h m the nonlinear parts,pr,9:. y r , yf, yr , can be
casily obtained by examining eqns (39-41. 55-58,61,
39"41').



476

From now on, the governing equation of the
system, eqn (29). may be written symbolically as

A*& = ~ h+GAT+N, (62)

where F i s a constant (n +m +2) x (n + rn + 2)ma-
trix; C is a constant (n +m +2) x 2 matrix; and N
stands for the vector, of kngth n +m + 2, of non-
linear functions. One may also rewrite eqn (62) as

A&=AQAO+GAT+N). (63)

I t i s noticed that so far no approximation whatsoever
has been made and the order of the nonlinear func-
tions, N, is higher than or equal to two.

8, THE MEASUPEMENTS

I t is assumed that the position of the end effector,
(x*, z*), can be measured. The difference between the
end effector and the target position can be obtained
as

6,=x*-x'

=!'(sin j- sin flf) +!'(sin 4 - sin 4f)

-Cos~u~+cosfl~u:J -cos~u~

+ cos 4Juy,

6,iz* - 2'

= I2(cos /I- cosB') +!'(cos 4 - cos

+ sinBU3,- sin/IWi/+sin #u!,

- sin 4JUAf. (65)

I t i s seen that 6 is a nonlinear hnction of the state
variables. If a Taylor series expansion of 6 is per-
formed about the final position, the linear expressions
of 6 are obtained as

6, =I'cos BrAP +I'cos 4fA4

+ sin /?/U;fAS + sin ~$fUlfAt#~

-~osfl'AU:- W S ~ ~ A U A ,

6, -Iz sinPfAB -1' sin 4/60

+ cos BrU;fAP +cos 4JVAfA4

+ sin BfAUT +sin #fAU!. (67)

NOW, the governing equations and the measurements
of the system in linear form can be symbolically
written as

A& = A ' F ~+  CAT,

where

(66'. 67*)

andHis aconstant 2 x (n +m + 2) matrix. Based on
the Constant matrices. ArF, AJG, H, a linear esti-
mator can be constructed for the purpose of control.

9. DlSCUSSION

I t is noticed that, in the works of Lee et 4f. [q,Lee
and Wang [SI, for the control of a flexible robot arm,
as well as in t h i s work, the equations of the system
and the measurements may be symbolically written as

d = Y(a, n).

6 = &a),

wbere a is a vector of state variables (a = [Am, AujIT

in th is work); o i s a vector of control variables
(a= [AT,,AT 2]' in t h i s work); 6 is the measure-
ments-a nonlinear vector function of the state vari-
ables; Y is a nonlinear vector of function of the
state and the control variables; Y and 6 may be
written as

d =Pa +Rn+ YN(a, o),

d =Ha + aN(a). (72)

In eqns (71-72), P, R, H are constant matrices; YN

and 6'" are nonlinear functions. Let 6 stand for the
state variables of t h e estimator (observer) and let the
observer and control law be expressed respectively as

m = -J&,

(73)

(74)

where L is the estimate gain matrix and J is the
control gain matrix. T h e gain matrices, L and J, may
be comtruckd hased on P, R and H by using the
pole-replacement method [13, 141, or by applying the
optimal control thcoryI13, 151.

In this work, the detailed expressions of P, R, H,
YN and aN have been derived rigorously for a two-
link flexible robot arm moving in the vertical plane.
If the system and the measurements had been linear,
i.e., YN=6N=0, then any properly obtained gain
matrices, L and J, would have guaranteed the con-
vcrmcy and the stability of the solutions, in other
words, the end effector eventually would have
reached the target asymptotically. Wuse the system
and the me8surements are nonlinear, i t i s necessary to
divide the proasses of control into a first stage coarse
control and a last stage fine control [7,8]. A relatively
simpk coarse control law will bring the end effector
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to the neighborhood of the target and then the tine
control law is activated to stabilize the whole system.
Although finding the detailed expressions of the gain
matrices is kft for future study, we feel that there is
no major difficulty in doing so by using the pole-
plaoment method or by applying the optimal control
theory.
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